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Abstract—Boundary-layer analysis is performed for the buoyancy-induced flows in a saturated porous

medium adjacent to horizontal impermeable surfaces. Similarity solutions are obtained for the convective

flow above a heated surface or below a cooled surface, where wall temperature is a power function of

distance from the origin. Analytical expressions for boundary-layer thickness, local and overall surface

heat flux are obtained. Applications to convective flow in a liquid-dominated geothermal reservoir
are discussed.

NOMENCLATURE

A, constant defined by equation (6a);

C, specific heat of the convective fluid;

1, dimensionless stream function defined by
equation (16);

g, acceleration due to gravity,

h, local heat-transfer coefficient;

h, average heat-transfer coefficient defined by
equation (33);

K, permeability of the porous medium,;

k, thermal conductivity of the porous medium;

L, length of the heating or cooling surface;

Nu,, local Nusselt number, Nu, = hx/k;

Nu, average Nusselt number, Nu = hL/k;

D, pressure;

0, over-all heat-transfer rate;

q, local heat-transfer rate;

Ra, modified Rayleigh number,
Ra=|T,—T,lpogBKL/ux;

Ra,, modified local Rayleigh number,
Ra, = p, gBK| T, — Too| x/uat;

S, spanwise dimension;

T, temperature;

u, Darcy’s velocity in x-direction;

v, Darcy’s velocity in y-direction;

X, horizontal coordinate;

Y. vertical coordinate.

Greek symbols

A equivalent thermal diffusivity;

B, coefficient of thermal expansion;

dm.  momentum boundary-layer thickness;

or, thermal boundary-layer thickness;

n, dimensionless similarity variable defined
by equation (15);

fm,  value of 7 at the edge of momentum

boundary layer;

nr, value of n at the edge of thermal boundary

layer;

6, dimensionless temperature defined by
equation (17);

A, constant defined by equation (6a);

1, viscosity of convective fluid;

i density of convective fluid;

v, stream function.

Subscripts
oo,  condition at infinity;
w, condition at the wall.

1. INTRODUCTION

IT1s well known that if the temperature of a horizontal
surface differs from that of the surrounding fluid, a
vertical density gradient will be generated in the sur-
rounding fluid which will induce a longitudinal pressure
gradient. If the induced pressure gradient is greater
than the buoyancy force, a convective movement in the
direction of decreasing pressure is set up in the fluid
adjacent to the surface. The buoyancy force in this
situation is acting perpendicular to the direction of
fluid motion. The problem has been studied theoreti-
cally by Stewartson [1], Gill [2], Rotem and Claasen
{3], Pera and Gebhart [4], and Blanc and Gebhart [5],
among others. In all of these papers, boundary-layer
approximations are applied, and similarity solutions
are obtained for wall temperature being a power
function of distance from the leading edge.

The corresponding problem of buoyancy induced
flow in a saturated porous medium adjacent to an
impermeable wall has received relatively little attention.
The first analytical paper dealing with this problem
appears to be that of McNabb [6] who studied free
convection in a saturated porous medium above a
heated circular impermeable surface with wall tem-
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perature being a step function with respect to the
radius; boundary-layer approximations are invoked
and approximate solutions are obtained. In the present
paper, we shall study free convection in a saturated
porous medium above a heated horizontal imper-
meable surface or below a cooled horizontal imper-
meable surface where wall temperature is a power
function of distance from the origin. The boundary-
layer approximations similar to those employed by
Wooding [ 7], McNabb|[ 6], and Cheng and Minkowycz
[8] are invoked, and similarity solutions for the prob-
lem are obtained. The problem has important appli-
cations to convective flow above the heated bedrock
or below the cooled caprock in a liquid-dominated
geothermal reservoir.

2. ANALYSIS

Consider the problem of free convection in a satu-
rated porous medium above a heated horizontal im-
permeable surface or below a cooled surface. The
physical situation is shown in Fig. 1 where x and y
are Cartesian coordinates in horizontal and vertical
directions with positive y axis pointing toward the
porous medium. The origin of the coordinate is chosen
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F1G. 1. Coordinate system.

at the point on the impermeable surface where wall
temperature begins to deviate from that of the sur-
rounding fluid. If we assume that (i) the convective
fluid and the porous medium are everywhere in local
thermodynamic equilibrium, (ii) the temperature of the
fluid is everywhere below boiling point, (iii) properties
of the fluid and the porous medium are constant, and
(iv) the Boussinesq approximation is employed, the
governing equations are given by

du ov

i =0

axtay = (1)
K

u=——2L 2

uox’
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p= poo[l —B(T- fo,)]s (5)

where the “+” sign in equation (3) refers to the case
of a heated plate facing upward (Fig. 1b) while the
“—" sign refers to the case of a cooled plate facing
downward (Fig. 1a). In equations (1)—(5), v and v are
the velocity components in the horizontal and vertical
directions, p, x and § are the density, viscosity, and
the thermal expansion coefficient of the convecting
fluid, K is the permeability of the porous medium,
o = k/(pC)y is the equivalent thermal diffusivity with k
denoting the thermal conductivity of the saturated
porous medium and (pC), the product of density and
specific heat of the convecting fluid. 7, p and ¢ are
respectively the temperature, pressure, and the gravi-
tational acceleration. The subscript “c0” refers to the
condition at infinity.
The boundary conditions for the problem are

y=0, T.=T,+Ax" ©v=0, (6a, b)
yooo, T=T, u=0, (7a,b)
where 4 > 0 and the “+” and “—" signs in equation

(6a) are for a heated plate facing upward and for a
cooled plate facing downward respectively. Equation
(6a) shows that the prescribed wall temperature is a
power function of distance from the origin.
The continuity equation is automatically satisfied by
introducing the stream function i as
u=%, and v = —(;w.
qy ax

t]

Eliminating p from equations (2) and (3) by cross
differentiation, the resulting equation in terms of ¥ is
a2 1pryﬂ T

ox? o ay? U

©)

ax

In terms of ¥/, equation (4) can be rewritten as

AT 3T 1/dy oT oy oT ,
----- = oy ax v ay) 0O

ayr  a
The appropriate boundary conditions for equations (9)
and (10) are

y=0, T,=T.+d4x". —-=0, (llab)

(12a,b)

3. SIMILARITY SOLUTION

From the numerical solutions for free convection in
a geothermal reservoir [9], it is observed that thermal
and momentum boundary layers exist along horizontal
impermeable surfaces whenever wall temperature
differs from that of the surrounding fluid. If boundary-
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layer approximations are invoked, equations (9) and
(10) become

2
*"“Zyl/z, = wTKp:gﬂ —Z, (13)
and
O*T 1fay éT oy oT
a—yﬁ;(aa“a;a—y)- (9

To seek similarity solutions to equations (13) and (14)
with boundary conditions (11) and (12), we now intro-
duce the following dimensionless variables

KpogBA\'®
= ( P gﬂ > yx(/.—Z)/a — (Rax)l/S X’ (15)
o X
Kp.gBA 1 1+4)/3 1/3
Y =u T xUTf(n) = a(Rax)'*f(n), (16)
8(n) = (T—TIATW— T), (17)
where Ra, = po gBK|T,— T, |x/uax is the modified
local Rayleigh number.
In terms of new variables, it can be shown that the
velocity components are given by

2/3
o

. _al:KPoogﬂATls[i;z nf,_{_(l_ﬂ)f}x(a—z)/a.
o 3 3
{19)

Governing equations (13) and (14) in terms of the
new variables are

(18)

A=2
fr+i0+ (T)ne’ =0, (20)
1+4
6" — 26" + (%) 70 =0, 1)
with boundary conditions given by
0)=1, f0)=0, (22a,b)
B(0) =0, f(0)=0, (23a,b)

where the primes in equations (20)—(23) denote differ-
entiation with respect to #.

4. RESULTS AND DISCUSSION

Equations (20) and (21) are two coupled non-linear
differential equations for  and f with two-point bound-
ary conditions given by equations (22) and (23).
Numerical solutions can be obtained by the Runge-
Kutta method by first converting the boundary-value
problem to an initial-value problem and with a
systematic guessing of slopes at # = 0 by the shooting
method. Results for f, f’, 0 and & vs 5 for selected
values of 4 are presented in Figs. 2-7.

The boundary-layer approximations used in the
analysis are valid if (i) /0y » d/0x and (ii) v « u. From
equation (15), it follows that y/x = O(Ra; '/?). Further-
more, the ratio of equations (19) and (18) gives v/u =
O(Ray !73). Thus, the first and the second conditions
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F1G. 3. Dimensionless velocity distribution vs # for selected
values of A.

are satisfied if Ra, is large. Near the leading edge at
x =0, the boundary-layer approximations are not
expected to be valid. The expressions for thermal and
momentum boundary-layer thickness can be obtained
if the edges of the boundary layers are defined as the
points where 6 or u/u, (with u, denoting the “slip
velocity” along the wall) have a value of 0.01. From
Figs. 3 and 4 we locate the edges of the boundary
layers and denote these values by #,, and 7. It follows
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F1G. 4. Dimensionless temperature vs # for selected values
of 4.

6
FIG. 5. Value of [ —0'] vs n.
from equation (15) that
%’" - # (24a)
% - @%ﬁ’ (24b)

where the values of 1, and nr for selected values of A
are tabulated in Table 1, which shows that the
momentum boundary-layer thickness and the thermal
boundary-layer thickness have about the same order
of magnitude.

It is of interest to note that although u — 0 outside
the momentum boundary layer, the value of vertical
velocity in general is not zero there. This can be seen
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Table 1. Values of [ —0'(0)], #r. and #,, for
selected values of 4

4 (0] " "
0.5 0.8164 5.0 6.4
1.0 1.099 4.5 5.4
L5 1.351 40 44
20 1.571 3.7 38

from equation (19) with (23b) to give

1/3
Vo = _M[M:I f(oc)x(i—l)/f*7 (25)

3 o
which shows that v,, is negative if 2 > — |, positive if
A< —1, and zero if A = —1. Furthermore, the magni-

tude of v, is increasing with x if 4 > 2, decreasing with
x if 4 <2, and independent of x if A = 2. It is worth
noting that the value f(o0) in equation (25) is positive
and finite as shown in Fig. 2.
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To obtain the pressure distribution, we substitute
equations (2), (8) and (17) into equation (13) and
integrate the resulting expression from x = 0 to x, and
from y to y = oo to give

px, ¥} = Fpegy+pilx,y) (26a)
with
w A 2/3 ]
pilx, y) = W[M} XIZ(H”]BJ O(W)d’?ﬁ (26b)
Ho n

where p, is the pressure induced by the density gradient.
Along the wall at y = 0, equation (26a) reduces to

w© A 2/3 X ]
p(x,0) = pu(x) = W[ﬂ_gﬂ‘} x“““”“f 0(n) dn.

o 0
(26¢)
which shows that p,, is increasing, decreasing, or con-
stant with respect to x depending on whether A > —1,
A< —l,orl=—1.
The local surface heat flux can be computed from

i (3)
4 6y y=0'

With the aid of equations (17) and (15), equation (27)
can be rewritten as

27

1/3
q(X)=kA‘”3[K%(‘qﬂ x$TIR[—g0)], (28)

which shows that g(x) increases as x is increased if
4> 1/2; q(x) decreases as x is increased if 1 < 1/2; and
q(x) is constant if A = 1/2.

We now examine the range of A for which the
problem is physically realistic. Since the wall tempera-
ture is different from that of the surrounding fluid at
x > 0, both 4 and § must be increasing or at least
constant with respect to x. It follows from equations
(18) and (25) that these conditions are satisfied if
1/2 € 2 < 2. Let’s consider the variation of boundary-
layer thickness, vertical velocity at infinity, local surface
heat flux, induced pressure and horizontal velocity at
the wall with respect to x, as given by equations (18)
and (24)-(28), for the limiting cases of A =1/2 and
A = 2. The case of A = 1/2 corresponds to the constant
heat flux case where u,, = constant, & oc \/x, Voo OC
1//x, and p,, oc —x. For the case of 1 = 2, both § and
vy are independent of x while q oc x2, p,, oc —x2, and
Uy OC X.

From the definition of the local Nusselt number
Nu, = hx/k = gx/k(T, — T, ) (where h is the local heat-
transfer coefficient) and with the aid of equation (28),
we have

Nu,
(Ray)'™

[—60)], (29)
which is presented for selected values of 4 in Table 1
and plotted in Fig. 6.

The overall surface heat-transfer rate for a rectangu-
lar surface with a length L and a width S can be com-
puted from

L
Q= Sj q(x)dx, (30)
0

which can be integrated explicitly after g(x), given by
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equation (28), has been substituted in equation (30)
to give

— 3 4 4/3 pwgﬁK 1 42+1)3
0= (42 r-oonss [__W | e

31
The average Nusselt number is defined by Nu = hL/k
where the average heat-transfer coefficient i depends
on the choice of the temperature difference between the
wall and the temperature of the fluid away from the
wall. If the temperature difference is based on the
mean temperature difference defined by

1 JL AL! (T,— T
(Tw_ch)z— (Tw—Tm)dx=-———=‘ ,
Ljo 1+ 1+7
(32)
and B
Q = IT,—T.)SL, (33)

then, the average Nusselt number is given by
Nu 3(1+ A)*3
= -6
(Ra)'’® (1+472) [-0©),
where Ra = |T,— T, |p.gBKL/us. Equation (34) for
different values of 1is presented in Table 2 and in Fig. 7.
Table 2. Values of

(34)

Nu/(Ra)!'3
i Nuj(Ra)"?
0.5 1.402
1.0 1.662
1.5 1.965
2.0 2.266

To gain some feeling of the order of magnitude of
various physical quantities in a geothermal application,
consider an upward facing heated horizontal imper-
meable surface, 1 km by 1 km, with a wall temperature
increasing from 288°K at x = 0 to 573°K at x = lkm
according to a power law variation given by equation
(6a). For numerical computations the following physi-
cal properties are used: f =28 x 10~ */K, p, =092 x
10°g/m3, C=42x10*J/kgK, and k=24W/mK.
The value of u is a strong function of temperature
varying from 0.54 x 10~ 3 Ns/m? at 288K to 0.042 x
1073 Ns/m? at 573 K, whereas the value of K depends
on the locality ranging from 107 '*m? at Wairakei,
New Zealand, to 107'°m? at Hawaii. If the value of
=054 x10"3Ns/m? and K =10""?m? are used,
the boundary-layer thickness at x = 1 km and the total
heat-transfer rate for selected A are presented in Table 3.
It should be noted that if the values of u = 0.042 x
107* Ns/m? and K = 10~ ' m? are used, the boundary-
layer thickness will be considerably thinner with an
associated increase in heat-transfer rate.

Table 3. Values of §,, and dr at x = 1 km as
well as Q for selected values of 4

A Om oy Q
0.5 503 m 379m 7.2 MW
1.0 434 m 341m 5.8 MW
1.5 364 m 310m 5.1 MW
20 325m 279m 4.6 MW
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5. CONCLUDING REMARKS

The foregoing analysis is based on the boundary-
layer approximations which are applicable for large
Rayleigh numbers. The analytical expressions for total
surface heat transfer can be used for an approximate
estimate of energy transfer rate between a horizontal
surface to the surrounding saturated porous medium
when the temperature of the impermeable surface is
different from that of the surrounding fluid. The first
author (P. Cheng) has extended the present analysis
to an axisymmetric flow in a porous medium heated or
cooled by a circular impermeable surface [10].

Acknowledgement—The authors would like to take this
opportunity to thank Mr. W. C. Chau for his assistance in
the numerical computations. This study is part of the Hawaii
Geothermal Project funded in part by the RANN program
of the National Science Foundation of the United States
(Grant No. GI-38319), the Energy Research and Develop-
ment Administration of the United States (Grant No.
E(04-3)-1093), and by the State and County of Hawaii.

REFERENCES

1. K. Stewartson, On the free convection from a horizontal
plate, Z. Angew. Math. Phys. 9, 276-281 (1958).

2. W.N.Gill, D. W. Zch and E. D. Casal, Free convection
on a horizontal plate, Z. Angew. Math. Phys. 16, 539--541
(1965).

PinG CHENG and 1-DErF CHANG

3. Z. Rotem and L. Claussen, Natural convection above
unconfined horizontal surfaces, J. Fluid Mech. 38. 173
192 (1969).

4. L. Pera and B. Gebhart. Natural convection flows ad-
jacent to horizontal surfaces resulting from the com-
bined buoyancy effects of thermal and mass diffusion,
Int. J. Heat Mass Transfer 15, 269--278 (1972).

5. P. Blanc and B. Gebhart, Buoyancy induced flows ad-
jacent to horizontal surfaces. in Proceedings of the 5th
International Heat Transfer Conference, Tokyo, Juapun,
3-7 September 1974. AL.Ch.E., New York (1974).

6. A. McNabb, On convection in a saturated porous
medium, in Proceedings of the 2nd Australian Con-
Sference on Hydraulics and Fluid Mechanics, pp. C161
C171. The University of Auckland Press, New Zealand
(1965).

7. R. A, Wooding, Convection in a saturated porous
medium at large Rayleigh number or Peclet number.
J. Fluid Mech. 15, 527544 (1963).

8. P. Cheng and W. J. Minkowycz. Similarity solutions
for free convection about a dike, Hawaii Geothermal
Project, Engineering Program, Technical Report No. 10
{October 1975).

9. P. Cheng, K. C. Yeung and K. H. Lau, Numerical solu-
tions for steady free convection in island geothermal
reservoirs, in Proceedings of 1975 International Seminar
on Future Energy Production—Heat and Muss Transfer
Problems. Hemisphere, Washington, D.C. (1965).

10. P. Cheng and W. C. Chau, Similarity solutions for con-
vection of ground-water adjacent to horizontal imper-
meable surfaces with axisymmetric temperature distri-
bution, Hawaii Geothermal Project, Engineering Pro-
gram, Technical Report No. 14 (April 1976).

ECOULEMENT DE CONVECTION NATURELLE DANS UN MILIEU POREUX
SATURE ADJACENT A DES SURFACES IMPERMEABLES HORIZONTALES

Résumeé—L’¢coulement produit par les forces de gravité dans un milieu poreux saturé adjacent & des

surfaces imperméables horizontales est étudié suivant une analyse du type couche-limite. Des solutions

en similitude sont obtenues pour Iécoulement convectif sur une surface chauffée ou sous une surface

refroidie lorsque la température de paroi est une fonction puissance de la distance a I'origine. On donne

des expressions analytiques des épaisseurs de couche limite et des flux de chaleur pariétaux locaux et

globaux. Des applications a I'¢coulement convectif dans un réservoir géothermique a prédominance liquide
sont également discutées.

FREIE KONVEKTIONSSTROMUNGEN IN EINEM GESATTIGTEN, POROSEN MEDIUM,
DAS AN UNDURCHLASSIGE, WAAGERECHTE OBERFLACHEN ANGRENZT

Zusammenfassung—Fiir freie Konvektionsstromungen in einem geséttigten. pordsen Medium, das an

waagerechte, undurchlissige Oberflichen angrenzt, wird eine Grenzschichtanalyse durchgefiihrt. Ahnlich-

keitslosungen ergeben sich fiir die Konvektionsstromung oberhalb einer erwdrmten Oberfliche oder

unterhalb einer gekiihlten Flidche, wo die Wandtemperatur eine Potenzfunktion des Abstands vom

Ursprung darstellt. Analytische Ausdriicke lassen sich fiir die Grenzschichtdicke, den ortlichen und

integralen Warmestrom erhalten. Anwendungen auf konvektive Stromungen in einem fliissigkeits-
dominierten geothermischen Speicher werden diskutiert.

CBOBOJHBIE TYPBYJIEHTHBIE TEYEHUS B HACBIIIEHHON HOPl/ICTOl;iv
CPEAE BbJIM3WU HEIMPOHUIIAEMbIX I'OPU3OHTAJIbHBIX NMOBEPXHOCTEHN

Annotauuss — C NOMOLUBK) TEOPHM MOTPAHMYHOTO CJIOS PacCMATpUBAIOTCH CBOOOAHbIE TypOy-

SIEHTHbIC TEYEHUA B HACLILLICHHON NOPHCTOM cpeae BOIM3H HEMPOHHLIAEMbIX TOPH3OHTAAbHbIX I0BEPX-

HocTed. [onyuenbl CXOAHbIE PELUEHHS A1 KOHBEKTHBHOTO HOTOKA HA/l HAT PEBAEMOI MOBEPXHOCThIO,

Korja Ttemmepatypa CTEHKH SBASETCA CTENEHHOM (QyHKUHEHR pacCTOSAHMA OT Havala KOODPAMHAT.

[TonyueHb! aHaJIMTHHECKHE BBIPAXKCHUSA A5 TOJILIMHBI IOFPAHUYHOIO CJIOS, IOKAABHOIO M CyMMap-

HOro TEMIOBOrO MOTOKA Ha NOBEPXHOCTH. OOCYHAROTCA NPUIOKEHNUS K KOHBEKTUBHOMY TEYEHMIO B
KM/IKOCTHOM TeOTEPMUYECKOM pe3epByape.



