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Abstract-Boundary-layer analysis is performed for the buoyancy-induced flows in a saturated porous 
medium adjacent to horizontal impermeablqsurfaces. Similarity solutions are obtained for the convective 
flow above a heated surface or below a cooled surface, where wall temperature is a power function of 
distance from the origin. Analytical expressions for boundary-layer thickness, local and overall surface 
heat flux are obtained. Applications to convective flow in a liquid-dominated geothermal reservoir 

are discussed. 

NOMENCLATURE 
VT, value of q at the edge of thermal boundary 

constant defined by equation (6a); layer; 

specific heat of the convective fluid; 8, dimensionless temperature defined by 

dimensionless stream function defined by equation (17); 

equation (16); 1, constant defined by equation (6a); 

acceleration due to gravity; K viscosity of convective fluid; 

local heat-transfer coefficient; Pt density of convective fluid; 

average heat-transfer coefficient defined by Ic/> stream function. 

equation (33); 
permeability of the porous medium; Subscripts 

thermal conductivity of the porous medium; a, condition at infinity; 

length of the heating or cooling surface; W, condition at the wall. 

local Nusselt number, Nu, = hx/k; 

average Nusselt number, Nu = hL/k; 1. INTRODUCTION 

pressure; IT IS well known that if the temperature of a horizontal 

over-all heat-transfer rate; surface differs from that of the surrounding fluid, a 

local heat-transfer rate; vertical density gradient will be generated in the sur- 

modified Rayleigh number, rounding fluid which will induce a longitudinal pressure 

Ra = IT,-T,lp,gWJ~a; gradient. If the induced pressure gradient is greater 

modified local Rayleigh number, than the buoyancy force, a convective movement in the 

Ra, = PmgBKIT,-T,Ix/~~; direction of decreasing pressure is set up in the fluid 

spanwise dimension; adjacent to the surface. The buoyancy force in this 

temperature; situation is acting perpendicular to the direction of 

Darcy’s velocity in x-direction; fluid motion. The problem has been studied theoreti- 

Darcy’s velocity in y-direction; tally by Stewartson [l], Gill [2], Rotem and Claasen 

horizontal coordinate; [3], Pera and Gebhart [4], and Blanc and Gebhart [5], 

vertical coordinate. among others. In all of these papers, boundary-layer 
approximations are applied, and similarity solutions 

reek symbols 

a, equivalent thermal diffusivity; 

P> coefficient of thermal expansion ; 
6 mr momentum boundary-layer thickness; 

bT> thermal boundary-layer thickness; 

‘I> dimensionless similarity variable defined 
by equation (15); 

? “> value of q at the edge of momentum 
boundary layer; 

are obtained for wall temperature being a power 
function of distance from the leading edge. 

The corresponding problem of buoyancy induced 
flow in a saturated porous medium adjacent to an 
impermeable wall has received relatively little attention. 
The first analytical paper dealing with this problem 
appears to be that of McNabb [6] who studied free 
convection in a saturated porous medium above a 
heated circular impermeable surface with wall tem- 
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perature being a step function with respect to the 
radius; boundary-layer approximations are invoked 

K ip 
(2 = _.. ! 1 --1pg . 

Ll $1 
(3) 

and approximate solutions are obtained. In the present 
paper, we shall study free convection in a saturated 
porous medium above a heated horizontal imper- 

.;+,$ = xg;+;;j, (4) 

meable surface or below a cooled horizontal imper- 
meable surface where wall temperature is a power P = &[I -B(T- Z)], (5) 

function of distance from the origin. The boundary- where the “ +” sign in equation (3) refers to the case 
layer approximations similar to those employed by of a heated plate facing upward (Fig. lb) while the 
Wooding [7], McNabb [6], and Cheng and Minkowycz “ 3, - sign refers to the case of a cooled plate facing 
[8] are invoked, and similarity solutions for the prob- downward (Fig. la). In equations (l)-(5), u and 1: are 
lem are obtained. The problem has important appli- the velocity components in the horizontal and vertical 
cations to convective how above the heated bedrock directions, p, p and ,/3 are the density, viscosity, and 
or below the cooled caprock in a liquid-dominated the thermal expansion coefficient of the convecting 
geothermal reservoir. fluid. K is the permeability of the porous medium, 

t( = k/(pC), is the equivalent thermal diffusivity with k 
2. ANALYSIS denoting the thermal conductivity of the saturated 

Consider the problem of free convection in a satu- porous medium and (PC), the product of density and 
rated porous medium above a heated horizontal im- specific heat of the convecting fluid. T, p and g are 
permeable surface or below a cooled surface. The respectively the temperature, pressure, and the gravi- 
physical situation is shown in Fig. 1 where x and y tational acceleration. The subscript “co” refers to the 
are Cartesian coordinates in horizontal and vertical condition at infinity. 
directions with positive J axis pointing toward the The boundary conditions for the problem are 
porous medium. The origin of the coordinate is chosen !‘=o, r,= T,i_Ax’, L’=o, @a, b) 

-L=L n -Lv<-L 
!‘+;c. T=T,, u=O, Va, b) 

where A > 0 and the “ +” and “-” signs in equation 

(6a) are for a heated plate facing upward and for a 
cooled plate facing downward respectively. Equation 

(6a) shows that the prescribed wall temperature is a 

r power function of distance from the origin. 

‘V 
The continuity equation is automatically satisfied by 

introducing the stream function $ as 

u=z (^I) 

?y . 

and c= --. 

ix (8) 

Y 
4 Eliminating p from equations (2) and (3) by cross 

v. 
.’ 

differentiation, the resulting equation in terms of $ is 
‘. t, ; ,’ ‘. : ,’ 

..’ 
“.. 

. 
:’ ,_.: 

In terms of $, equation (4) can be rewritten as 

Tw=T, o 7 
FIG. 1. Coordinate system. 

at the point on the impermeable surface where wall 
The appropriate boundary conditions for equations (9) 

temperature begins to deviate from that of the sur- 
and (10) are 

rounding fluid. If we assume that (i) the convective 
fluid and the porous medium are everywhere in local 

I’ = 0, T, zz T, *Ax’, ?c = 0, 
f?u 

(Ilab) 

thermodynamic equilibrium, (ii) the temperature of the 
fluid is everywhere below boiling point, (iii) properties 811, 

4”m, T = T,, ~ = 0. 
of the fluid and the porous medium are constant, and 2) 

(12a, b) 

(iv) the Boussinesq approximation is employed, the 
governing equations are given by 3. SIMILARITY SOLUTION 

From the numerical solutions for free convection in 

(1) a geothermal reservoir [9], it is observed that thermal 
and momentum boundary layers exist along horizontal 

K 8P u= -__ impermeable surfaces whenever wall temperature 
1 3 p ox differs from that of the surrounding fluid. If boundary- 
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layer approximations are invoked, equations (9) and 
(10) become 

aZ+ _ Kp,sP aT 

ayZ=+ n ax' (13) 

and 

(14) 

To seek similarity solutions to equations (13) and (14) 
with boundary conditions (11) and (12) we now intro- 
duce the following dimensionless variables 

(15) 

~“+‘:“~f(~) = a(R~,)“~f(q), (16) 

W/) = (T- T,)/(T,- T,), (17) 

where Ra, = pm gbK 1 T, - T, Ix/pa is the modified 
local Rayleigh number. 

In terms of new variables, it can be shown that the 
velocity components are given by 

(19) 

Governing equations (13) and (14) in terms of the 
new variables are 

(20) 

(21) 

with boundary conditions given by 

0(O) = 1, f(O)= 0, (2'hb) 
O(m)= 0, f'(a)= 0, 6% b) 

where the primes in equations (20)-(23) denote differ- 
entiation with respect to q. 

4. RESULTS AND DISCUSSION 

Equations (20) and (21) are two coupled non-linear 
differential equations for 0 and f with two-point bound- 
ary conditions given by equations (22) and (23). 
Numerical solutions can be obtained by the Runge- 
Kutta method by first converting the boundary-value 

problem to an initial-value problem and with a 
systematic guessing of slopes at q = 0 by the shooting 
method. Results for f, f', 0 and 0’ vs ‘1 for selected 
values of I are presented in Figs. 2-7. 

The boundary-layer approximations used in the 
analysis are valid if(i) a/ay >> a/ax and (ii) u <c u. From 
equation (15), it follows that y/x = O(RU;“~). Further- 
more, the ratio of equations (19) and (18) gives u/u = 
O(RCI;“~). Thus, the first and the second conditions 

FIG. 2. Value offvs ‘1. 

-a- 
0.6 

t 

6 7 
1) 

FIG. 3. Dimensionless velocity distribution vs 9 for selected 
values of 1. 

are satisfied if Ru, is large. Near the leading edge at 
x = 0, the boundary-layer approximations are not 
expected to be valid. The expressions for thermal and 
momentum boundary-layer thickness can be obtained 
if the edges of the boundary layers are defined as the 
points where 0 or u/u, (with u, denoting the “slip 
velocity” along the wall) have a value of 0.01. From 
Figs. 3 and 4 we locate the edges of the boundary 
layers and denote these values by n,,, and r~r. It follows 
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FE. 4. Dimensionless temperature vs ‘1 for selected values 
of i. 

FIN. 6. Values of Ntr,:(Ra,)"" or [-O(O)] vs i. 

FIG. 5. Value of [ -0’1 vs 9 

from equation (15) that 

&II %?I -= 
x (Ra,)‘13 ’ 

Pb) 

where the values of q,,, and qT for selected values of 3, 
are tabulated in Table 1, which shows that the 
momentum boundary-layer thickness and the thermal 
boundary-layer thickness have about the same order 
of magnitude. 

It is of interest to note that although u --t 0 outside 
the momentum boundary layer, the value of vertical 
velocity in general is not zero there. This can be seen 

:,,L 
1.0 1.5 : 

x 

FIG. 7. Values of Nui(Ra)"" vs i. 

Table I. Values of [-o’(O)], qr. and 7, for 
selected values of /1 

0 

3 

0.5 0.8164 5.0 6.4 
1.0 1.099 4.5 5.4 
1.5 1.351 4.0 4.4 
2.0 1.571 3.7 3.8 

from equation (19) with (23b) to give 

(lf3L)E Kpmg/L4 1’3 
V co= 

3 [ 1 ,f‘(x)x”-2”3, (25) 
P 

which shows that r, is negative if i > - 1, positive if 
E. < - 1, and zero if /1 = - I. Furthermore, the magni- 
tude of v, is increasing with x if i > 2, decreasing with 
x if i < 2, and independent of x if 1. = 2. It is worth 
noting that the valuef(m) in equation (25) is positive 
and finite as shown in Fig. 2. 



Buoyancy induced flows in a saturated porous medium 1271 

To obtain the pressure distribution, we substitute 
equations (2), (8) and (17) into equation (13) and 

integrate the resulting expression from x = 0 to x, and 
from y to y = co to give 

with 
p(.u,v)= 3Pagy+Pl(x,y)> (26a) 

p,(x, y) = pa[+]Z-Jx[r(i+1r1~3 l; O(;rl)d;rl, (26b) 

where p1 is the pressure induced by the density gradient. 
Along the wall at y = 0, equation (26a) reduces to 

p(x,o) = pw(x) = pa[~]z’3x[z(i+1)113 [: f3(r/)dq, 

(264 
which shows that p,+, is increasing, decreasing, or con- 
stant with respect to x depending on whether I > - 1, 
i < -1, or/z = -1. 

The local surface heat flux can be computed from 

4=-k (‘T 
( 1 dy @’ 

(27) 

With the aid of equations (17) and (15) equation (27) 
can be rewritten as 

X’4”-2)/3[-@(0)], (28) 

which shows that q(x) increases as x is increased if 
1 > l/2; q(x) decreases as x is increased if A < l/2; and 
q(x) is constant if /1 = l/2. 

We now examine the range of 3, for which the 
problem is physically realistic. Since the wall tempera- 
ture is different from that of the surrounding fluid at 
x > 0, both u and 6 must be increasing or at least 
constant with respect to x. It follows from equations 
(18) and (25) that these conditions are satisfied if 
l/2 d i < 2. Let’s consider the variation of boundary- 
layer thickness, vertical velocity at infinity, local surface 
heat flux, induced pressure and horizontal velocity at 
the wall with respect to x, as given by equations (18) 
and (24))(28) for the limiting cases of /I = l/2 and 
3, = 2. The case of i. = l/2 corresponds to the constant 
heat flux case where u, = constant, S cc ,,/x, v, cc 
1/4x, and pw cc -x. For the case of A= 2, both 6 and 
v, are independent of x while q cc x2, pw cc -x2, and 
UwCCX. 

From the definition of the local Nusselt number 
Nu, = hx/k = qx/k(T, - T,) (where h is the local heat- 
transfer coefficient) and with the aid of equation (28) 
we have 

NUX 
~ = [-Q’(O)], 
(Ru,)"~ 

which is presented for selected values of 3, in Table 1 
and plotted in Fig. 6. 

The overall surface heat-transfer rate for a rectangu- 
lar surface with a length L and a width S can be com- 
puted from 

s 

L 

Q = S dx)dx, (30) 
0 

which can be integrated explicitly after q(x), given by 

equation (28) has been substituted in equation (30) 
to give 

The average Nusselt number is defined by Nu = f;L/k 

where the average heat-transfer coefficient h depends 
on the choice of the temperature difference between the 

wall and the temperature of the fluid away from the 
wall. If the temperature difference is based on the 

mean temperature difference defined by 

and 
(32) 

Q = li(T,-)SL, 

then, the average Nusselt number is given by 
(33) 

(34) 

where Ra = 1 T,- T, Ip-,,gj?KL/pa. Equation (34) for 
different values of 1 is presented in Table 2 and in Fig. 7. 

Table 2. Values of 
Nu/(R~)‘!~ 

i, Nu/(Ra)“3 

0.5 1.402 
1.0 1.662 
1.5 1.965 
2.0 2.266 

To gain some feeling of the order of magnitude of 

various physical quantities in a geothermal application, 
consider an upward facing heated horizontal imper- 
meable surface, 1 km by 1 km, with a wall temperature 
increasing from 288°K at x = 0 to 573°K at x = 1 km 
according to a power law variation given by equation 
(6a). For numerical computations the following physi- 
cal properties are used: p = 2.8 x 10m4/K, p I = 0.92 x 

106g/m3, C = 4.2 x lo3 J/kg K, and k = 2.4 W/m K. 

The value of p is a strong function of temperature 
varying from 0.54 x 10-3Ns/m2 at 288K to 0.042 x 
10m3 Ns/m2 at 573 K, whereas the value of K depends 
on the locality ranging from 10-r4m2 at Wairakei, 

New Zealand, to 10-10m2 at Hawaii. If the value of 
p = 0.54 x 10e3 Ns/m’ and K = lo-r2 m2 are used, 
the boundary-layer thickness at x = 1 km and the total 
heat-transfer rate for selected 1 are presented in Table 3. 
It should be noted that if the values of p = 0.042 x 

10m3 Ns/m2 and K = lo-” m2 are used, the boundary- 
layer thickness will be considerably thinner with an 
associated increase in heat-transfer rate. 

Table 3. Values of h, and & at x = 1 km as 
well as Q for selected values of I 

1 &I ST Q 

0.5 503 m 319 m 1.2 MW 
1.0 434 m 341 m 5.8 MW 
1.5 364 m 310m 5.1 MW 
2.0 325 m 279m 4.6 MW 
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5. CONCLUDING REMARKS 3. 

The foregoing analysis is based on the boundary- 
layer approximations which are applicable for large 
Rayleigh numbers. The analytical expressions for total 
surface heat transfer can be used for an approximate 
estimate of energy transfer rate between a horizontal 

surface to the surrounding saturated porous medium 
when the temperature of the impermeable surface is 

different from that of the surrounding fluid. The first 

author (P. Cheng) has extended the present analysis 

to an axisymmetric flow in a porous medium heated or 

cooled by a circular impermeable surface [IO]. 

4. 
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ECOULEMENT DE CONVECTION NATURELLE DANS UN MILIEU POREUX 
SATURE ADJACENT A DES SURFACES IMPERMEABLES HORIZONTALES 

RbumC-L’&coulement produit par les forces de gravitt dans un milieu poreux saturt- adjacent h des 
surfaces impermkables horizontales est ttudib suivant une analyse du type couche-limite. Des solutions 
en similitude sont obtenues pour I’&coulement convectif sur une surface chauffke ou sous une surface 
refroidie lorsque la temptrature de paroi est une fonction puissance de la distance B l’origine. On donne 
des expressions analytiques des Cpaisseurs de couche limite et des flux de chaleur pariktaux locaux et 
globaux. Des applications $ I’&coulement convectif dans un rbservoir giothermique B prkdominance liquide 

sont kgalement discutCes. 

FREIE KONVEKTIONSSTRijMUNGEN IN EINEM GESATTIGTEN, PORijSEN MEDIUM. 
DAS AN UNDURCHL;iSSIGE, WAAGERECHTE OBERFLACHEN ANGRENZT 

Zusammenfassung-Fiir freie Konvektionsstriimungen in einem gesittigten. poriisen Medium, das an 
waagerechte, undurchllssige OberflTchen angrenzt, wird eine Grenzschichtanalyse durchgefiihrt. ;ihnlich- 
keitslijsungen ergeben sich fiir die KonvektionsstrGmung oberhalb einer erwiirmten OberflPche oder 
unterhalb einer gekiihlten Fliiche, wo die Wandtemperatur eine Potenzfunktion des Abstands vom 
Ursprung darstellt. Analytische Ausdriicke lassen sich fiir die Grenzschichtdicke. den ijrtlichen und 
integralen Warmestrom erhalten. Anwendungen auf konvektive StrGmungen in einem fliissigkeits- 

dominierten geothermischen Speicher werden diskutiert. 

CB060AHbIE TY PIiYJIEHTHbIE TEYEHMR B HAQ.I~EHHOI? IIOPMCTOfi 
CPEAE BEdIM3M HEFIPOHMUAEMbIX I-OPM30HTAJlbHbIX nOBEPXHOCTEti 

AHHoTaum - c nOMOUibK) TeOPHH nOrpaHH’lHOr0 CJIOR paCCMaTp&iBalOTCSi CBO605Hble Typ6y- 

JIeHTHble rCq’.ZHHIl B HaCblL”‘ZHHOti IlOfJllCTOti CpeJ,e B6flH3R HelTpOHIiUaeMbIX TO,,H30HTa,,bHblX “OBe,,X- 

HOCT&i. nOny%Hbl CXOnHbl‘Z peUlCHHfl nflti KOHBeKTHBHOrO EIOTOKa Han HarpCBaCMOfi “OB‘ZpXHOCTbEO, 

KOr,!,a TCM”CpaTy,,a CTeHKH IlB,,ReTCIl CTeWHHOii @yHKL,H&i PaCCTORHHR OT HZi%,,a KOOpnHHaT. 

flO,ly’iCHbl atianMTnqecKne BblpaZ+WHWl nml TOJIUHHbI norpaHnrHor0 cnon, nOKanbHOr0 M CyMMap- 

HOrO TenjlOBOrO IlOTOKa Ha IIOBCPXHOCTH. OGcymnamrcn IlpHJlOW.ZHWi K KOHBeKTBBHOMY TCYCHMIO B 

~KHDKOCTHOM reoTepMnsecKoM pe3epayape. 


